4 research outputs found

    INVESTIGATION OF INDUSTRY 5.0 HURDLES AND THEIR MITIGATION TACTICS IN EMERGING ECONOMIES BY TODIM ARITHMETIC AND GEOMETRIC AGGREGATION OPERATORS IN SINGLE VALUE NEUTROSOPHIC ENVIRONMENT

    Get PDF
    Industry 5.0 acceptance is accelerating, but research is still in its infancy, and existing research covers a small subset of context-specific obstacles. This study aims to enumerate all potential obstacles, quantitatively rank them, and assess interdependencies at the organizational level for Industry 5.0 adoption. To achieve this, we thoroughly review the literature, identify obstacles, and investigate causal relationships using a multi-criteria decision-making approach called single value Neutrosophic TODIM. Single-valued Neutrosophic sets (SVNS) ensembles are employed in a real-world setting to deal with uncertainty and indeterminacy. The suggested strategy enables the experts to conduct group decision-making by focusing on ranking the smaller collection of criterion values and the comparison with the decision-making trial and evaluation laboratory method (DEMATEL). According to the findings, the most significant hurdles are expenses and the funding system, capacity scalability, upskilling, and reskilling of human labor. As a result, a comfortable atmosphere is produced for decision-making, enabling the experts to handle an acceptable amount of data while still making choices

    Intelligent algorithm for trapezoidal interval valued neutrosophic network analysis

    Get PDF
    The shortest path problem has been one of the most fundamental practical problems in network analysis. One of the good algorithms is Bellman-Ford, which has been applied in network, for the last some years. Due to complexity in the decision-making process, the decision makers face complications to express their view and judgment with an exact number for single valued membership degrees under neutrosophic environment. Though the interval number is a special situation of the neutrosophic, it did not solve the shortest path problems in an absolute manner. Hence, in this work, the authors have introduced the score function and accuracy function of trapezoidal interval valued neutrosophic numbers with their illustrative properties. These properties provide important theoretical base of the trapezoidal interval valued neutrosophic number. Also, they proposed an intelligent algorithm called trapezoidal interval valued neutrosophic version of Bellman’s algorithm to solve neutrosophic shortest path problem in network analysis. Further, comparative analysis has been made with the existing algorithm

    Shortest path problem using Bellman algorithm under neutrosophic environment

    Get PDF
    An elongation of the single-valued neutrosophic set is an interval-valued neutrosophic set. It has been demonstrated to deal indeterminacy in a decision-making problem. Real-world problems have some kind of uncertainty in nature and among them; one of the influential problems is solving the shortest path problem (SPP) in interconnections
    corecore